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Wereport a scacistical analysis of leaf form for a sample of 48 1 collected from five yaupon

trees at Ponchatoula, Louisiana. Considerable variation exists within these "sun" leaves.

Across the 5 trees, surface area varies 24-fold (22.1-533 mm^), leaf specific mass 22-fold

(7.67-167.83 g m^), leaf length 5-fold (6-31 mm), leaf width 4.5-fold (4-18 mm), and

crenations 4.7-fold (7-33 per leaf)- Leaf complexity (LC) varies from 1 to 6 Fourier

frequencies, and the leaf dissection index (DI) varies from a nearly circular 1.036 to a high

of 1 .349. Trees in this population are statistically significantly different from each other in

average leaf size, leaf mass, leaf specific mass, and in number of crenations per leaf. In logistic

regression, the probability that a leaf will develop more crenations, increases with leaf size.

As leaf size changes, shape remains relatively constant within this population; amount of leaf

dissection does not correlate with other morphological variables. Leaf surface area is strongly

related to nodal position on the shoot, middle nodes generally produce the largest leaves.
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RESUMEN

Se realiza un analisis estadistico de la forma de la hoja sobre una muestra de 481 hojas

colectadas en cinco arboles en Ponchatoula, Louisiana. Existe una variacion considerable

entre esta hojas de "sol." En cinco arboles, el area de la superficie varia en 24 veces (de 22.1-

533 mm^), la masaespecfficade la hojaen22veces(de7.67-l67.83gm-2),lalongitud foliar

crenaciones en 4.7 veces (de 7-33 por hoja). La complejidad de la hoja (LC) varia de 1 a 6

frecuencias de Fourier, y el I'ndice de diseccion foliar (DI) varia desde casi circular 1.036 hasta

1 .349. Los arboles de esta poblacion muestran diferencias significativas estadisticamente en

el tamano foliar medio, masa foliar, la masa foliar especifica, y en el niimero de crenaciones

por hoja. En regresion logistica, la probabilidad de que una hoja desarrolle mas crenaciones

aumenta con el taman de la hoja. Cuando varia el tamano de la hoja, su forma permanece

relativamente constante en esta poblacion; la diseccion de la hoja no se correlaciona con otras

posicion nodal en la rama, los nudos medios producen generalmente las hojas mas grandes.



Advances in computer-assisted image analysis expand the ability of bota-

nists to use large sample sizes in leaf morphometric research (e.g., Kincaid

and Schneider 1983, White et al. 1988). Our objective was to quantify leaf

variability in a population of yaupon, Ilex vomitoria Alton (Aquifoliaceae) at

Ponchatoula, Louisiana. We collected leaves from five trees in order to

answer these questions: (1) Are trees homogeneous in leaf size and shape? (2)

Is leaf form related to nodal position along the twig? (3) Do predictive

relationships exist among leaf specific mass (g dry weight / m^ surface area),

crenation number, mass, area, dissection index, and leaf shape complexity?

(4) Howdo average leaf images per tree, reconstructed by Fourier transform,

compare to conventional morphometric statistical analysis?

Yaupon is a shrub and small tree common in forests along the Coastal

Plain from southern Virginia to Florida, and west to Texas (Elias 1980). The

leaves are small, flat, coriaceous, evergreen, elliptical, and have marginal

mucronate crenations (Radford et al. 1968).

A sample of 481 leaves was collected, on August 12, 1989, from 5 trees

growing within 100 meters of each other along a sunlit edge of a pine forest

at Ponchatoula, Louisiana. Leaves were individually numbered with a serial

and the blades placed into a plant press. After drying in a convection oven

at 70°C, the leaves were weighed to the nearest 0.0001 gram. Crenations

were counted using a stereo dissecting microscope. Maximum length and

width were recorded for each blade.

In our laboratory, leaf images are analyzed (Fig. 1) using the leaf boundary

method of Kincaid and Schneider (1983) which is based on Fourier transform.

In an analysis of various computerized leaf morphometric methods, White,

et al. (1988) found this method performed well in terms of discriminating

power and in the reconstruction of synthetic, average leaf images.

Leaves were photographically enlarged (Fig. 2), and the images bound-

aries digitized into x, y coordinates using a graphics pad (Model CR1212,
Summagraphics Corp., Fairfield, CT) attached to a Macintosh Ilci computer

(Fig. 1). Other details are in Kincaid and Schneider (1983), and in Figures

1-3. Image information lies in the values of the Fourier coefficients at each

frequency (Table 1). Leaves have the same size and shape, if and only if, their

Fourier coefficients are identical (Kincaid and Schneider 1983). Using this

method, leaf surface area, leaf complexity, and leaf dissection index were

computed for 342 out of the 48 1 leaves. Leaf complexity (LC) is a dimension-

less and discrete, ordinal variable providing a mathematical measure of the

"complexity" of a leaf's outline. For example, LC = 1 for pure ellipses, and
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LC = 1 for most elliptically shaped leaves with relatively smooth margins.

The more complicated the leaf shape, relative to the best fit ellipse, the

greater the integer value of LC (In terms of reverse Fourier transform, LC is

the number of frequencies necessary to reconstruct the leaf image to within

95% of the actual image.).

While LC captures a mathematical aspect of leaf shape, dissection index

(DI) is the empirical relationship between leaf perimeter and leaf surface area

amenable to biophysical interpretation of convective heat exchange. The
minimum value of DI is that of a circle for which DI always equals 1 .0. The

value of DI for a circularly shaped, entire leaf is slightly larger than 1 .0, and

the more deeply lobed, dissected or lanceolate a leaf shape, the larger the

value [DI = Perimeter / {2*SRQ(Area * pi))}. These variables, defined by

Kincaid and Schneider (1983), are useful in making comparisons of leaf

shape among leaves having different surface areas.



Weused Stat View (Abacus) and JMP (SAS 1 989) on Macintosh comput

ers to perform the data analysis. The technique of logistic regression (Pagan(

and Gauvreau 1993; using JMP) was utilized to search for trends, and u

visualize relationships between crenation interval (dependent variable) anc

leaf surface area, and between classification of leaves by tree (dependen

variable) and number of leaf crenations. While logistic regression is ;

commonly used statistical tool in biomedical fields for analyzing discreti

responses, it is rarely used in organismic biology.



mm2), leaf specific mass 22-fold (7.67-167.83 g m'^), leaf length 5 -fold (6-

3 1 mm), leaf width 4.5-fold (4-18 mm), crenations 4.7-fold (7-33 per leaf),

and leaf complexity (LC) from 1 to 6 Fourier frequencies. Leaf dissection

index (DI) changes from a nearly circular 1.036 to a high of 1 .349- Table 2

provides descriptive statistics and results of analysis of variance for these

leaves grouped by tree.

We found strong evidence for heterogeneity among the five trees for

average leaf area, mass, leaf specific mass, crenation number, and dissection

index (P < 0.00001 with R-square values for the main effect ranging from

0. 153-0.542, Table 2). Interestingly, average LC was homogeneous among

the 5 trees (F = 1.7; 4,338 df; P = 0.l4) and homogeneous among shoots

within each tree (P > 0.05). Wepredicted that leaf dissection, a variable

providing linkage to convective cooling ability, would be positively corre-

lated with leaf surface area. However leaf dissection did not correlate with

any variable, indicating that as leaf size changes, shape remains relatively

constant within this population.

In these "sun" leaves, leaf weight (r = 0.91), leaf specific mass (r = 0.24),

and crenation number (r = 0.48) increased with leaf size (P < 0.01 for each

correlation coefficient). Figure 4 presents the relationship between leaf mass

and leaf area. On an individual tree basis, dry weight of leaf is an excellent

predictor of surface area (e.g., in Figure 5 for Tree 5, R-square - 0.976) but

less so for all leaves (R-square = 0.826). As a field technique, leaf width pro-

vides the simplest predictor of leaf surface area (e.g., for Trees 1 & 4, Area =

25.30 * Width - 60.46, R-sq. = 0.91). Once it is determined that leaf shape

changes little with leaf area, regression equations could be used to predict

leaf area, as dry weight and/or blade width is easier to measure than leaf area.

Increased leaf specific mass usually confers greater water use efficiency and

photosynthetic capacity. Average leaf specific mass ranged from 82.6 in tree

4, to 141.3 g m"2 in tree 5. Wecannot explain why leaf specific mass varied

so much in this study, among 5 trees growing within 100 meters of each

other (Table 1). Indeed, trees 4 and 5, with essentially the same average leaf

images (Fig. 8), had the most divergent values for leaf specific mass.

Crenation number, grouped into 5 levels (7-10, 11-14, 15-18, 19-22,

and 23-33 crenations per blade), was declared a "response" variable, and

analyzed by logistic regression against leaf surface area as an explanatory

variable (Figure 5). In logistic regression, crenation value is not predicted,

rather, probabilities are estimated for each level of crenation "response,"

given leaf surface area. The resultant graph, partitions the outcome space

into mutually exclusive regions. To use the logistic regression graph, one

draws a vertical line at any desired surface area dividing the estimated

probability into segments for each level of response. For example, as leaf size

increases beyond 200 mm^ the probability that a leaf will have 7-10
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In Figure 6, we use logistic regression as a tool to visualize the estimated

probability of tree "membership" for a leaf, given the number of crenations

on a particular leaf Trees 1 and 3 have the lowest average number of

crenations per leaf; and Trees 2 and 4 have the largest average number (Table

2). The fitted logistic regression curves of Figure 6 provide a display of these
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analyzed on a per shoot basis (Fig. 7). For many siioots, 70-90% (R-square)

of total variability in leaf area is accounted for by nodal position. This holds

true even for long terminal shoots that have experienced, over the grov^^ing

season, an episodic growth and/or a developmental switch from preformed

to neo-formed (produced and released in current growing season) leaf buds

(lower right graph in Fig. 7). Shoots within trees had the same average leaf

size in ANOVA.
Average leaf images reconstructed for each tree, as computed from average

Fourier coefficients for the first 8 frequencies, are displayed in Figure 8 along

with principal component analysis of more conventional morphological

variables. The Fourier transform captures only the two-dimensional leaf

outline: We see from these average images that Trees 4 and 5 have very

similar leaf sizes and shapes, and that Trees 1 and 3 have similar leaf sizes but

different shapes. In principal component analysis, leaf area loaded heavily on
the first component which accounted for 0.33 of total variance. The shape

variables (DI and LC) loaded on the second component, accounting for 0.28

of the variance. Tree number, loaded on the third component, accounting for

0.19 of the variance. As a general rule for biological objects analyzed by
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; at the early and late nodes (Fig. 7). This range in leaf
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latitudinal and sun-shade extremes of the species.
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Wehave established nine study populations of yaupon. Three of these are

inland stations: Aiken, South Carolina; Homosassa Springs, Florida; and,

the subject of this paper, Ponchatula, Louisiana. Wehave also established six

coastal stations from the species northern distributional limit, Virginia

Beach, Virginia, to one of its southern limits. NewSmyrna Beach, Florida.

Exploratory analysis of the modestly sized data set of this paper has helped

us plan collection strategies for the other stations. As botanical methods of

computer-assisted image analysis advance (White et al. 1988), research

designs should be able to accommodate larger sample sizes of leaves,

involving more trees per population, and more shoots per tree.
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